Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
filter3(cons2(X, Y), 0, M) -> cons2(0, filter3(Y, M, M))
filter3(cons2(X, Y), s1(N), M) -> cons2(X, filter3(Y, N, M))
sieve1(cons2(0, Y)) -> cons2(0, sieve1(Y))
sieve1(cons2(s1(N), Y)) -> cons2(s1(N), sieve1(filter3(Y, N, N)))
nats1(N) -> cons2(N, nats1(s1(N)))
zprimes -> sieve1(nats1(s1(s1(0))))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
filter3(cons2(X, Y), 0, M) -> cons2(0, filter3(Y, M, M))
filter3(cons2(X, Y), s1(N), M) -> cons2(X, filter3(Y, N, M))
sieve1(cons2(0, Y)) -> cons2(0, sieve1(Y))
sieve1(cons2(s1(N), Y)) -> cons2(s1(N), sieve1(filter3(Y, N, N)))
nats1(N) -> cons2(N, nats1(s1(N)))
zprimes -> sieve1(nats1(s1(s1(0))))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
filter3(cons2(X, Y), 0, M) -> cons2(0, filter3(Y, M, M))
filter3(cons2(X, Y), s1(N), M) -> cons2(X, filter3(Y, N, M))
sieve1(cons2(0, Y)) -> cons2(0, sieve1(Y))
sieve1(cons2(s1(N), Y)) -> cons2(s1(N), sieve1(filter3(Y, N, N)))
nats1(N) -> cons2(N, nats1(s1(N)))
zprimes -> sieve1(nats1(s1(s1(0))))
The set Q consists of the following terms:
filter3(cons2(x0, x1), 0, x2)
filter3(cons2(x0, x1), s1(x2), x3)
sieve1(cons2(0, x0))
sieve1(cons2(s1(x0), x1))
nats1(x0)
zprimes
Q DP problem:
The TRS P consists of the following rules:
SIEVE1(cons2(s1(N), Y)) -> SIEVE1(filter3(Y, N, N))
ZPRIMES -> SIEVE1(nats1(s1(s1(0))))
SIEVE1(cons2(s1(N), Y)) -> FILTER3(Y, N, N)
FILTER3(cons2(X, Y), s1(N), M) -> FILTER3(Y, N, M)
FILTER3(cons2(X, Y), 0, M) -> FILTER3(Y, M, M)
SIEVE1(cons2(0, Y)) -> SIEVE1(Y)
ZPRIMES -> NATS1(s1(s1(0)))
NATS1(N) -> NATS1(s1(N))
The TRS R consists of the following rules:
filter3(cons2(X, Y), 0, M) -> cons2(0, filter3(Y, M, M))
filter3(cons2(X, Y), s1(N), M) -> cons2(X, filter3(Y, N, M))
sieve1(cons2(0, Y)) -> cons2(0, sieve1(Y))
sieve1(cons2(s1(N), Y)) -> cons2(s1(N), sieve1(filter3(Y, N, N)))
nats1(N) -> cons2(N, nats1(s1(N)))
zprimes -> sieve1(nats1(s1(s1(0))))
The set Q consists of the following terms:
filter3(cons2(x0, x1), 0, x2)
filter3(cons2(x0, x1), s1(x2), x3)
sieve1(cons2(0, x0))
sieve1(cons2(s1(x0), x1))
nats1(x0)
zprimes
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
SIEVE1(cons2(s1(N), Y)) -> SIEVE1(filter3(Y, N, N))
ZPRIMES -> SIEVE1(nats1(s1(s1(0))))
SIEVE1(cons2(s1(N), Y)) -> FILTER3(Y, N, N)
FILTER3(cons2(X, Y), s1(N), M) -> FILTER3(Y, N, M)
FILTER3(cons2(X, Y), 0, M) -> FILTER3(Y, M, M)
SIEVE1(cons2(0, Y)) -> SIEVE1(Y)
ZPRIMES -> NATS1(s1(s1(0)))
NATS1(N) -> NATS1(s1(N))
The TRS R consists of the following rules:
filter3(cons2(X, Y), 0, M) -> cons2(0, filter3(Y, M, M))
filter3(cons2(X, Y), s1(N), M) -> cons2(X, filter3(Y, N, M))
sieve1(cons2(0, Y)) -> cons2(0, sieve1(Y))
sieve1(cons2(s1(N), Y)) -> cons2(s1(N), sieve1(filter3(Y, N, N)))
nats1(N) -> cons2(N, nats1(s1(N)))
zprimes -> sieve1(nats1(s1(s1(0))))
The set Q consists of the following terms:
filter3(cons2(x0, x1), 0, x2)
filter3(cons2(x0, x1), s1(x2), x3)
sieve1(cons2(0, x0))
sieve1(cons2(s1(x0), x1))
nats1(x0)
zprimes
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 3 SCCs with 3 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
NATS1(N) -> NATS1(s1(N))
The TRS R consists of the following rules:
filter3(cons2(X, Y), 0, M) -> cons2(0, filter3(Y, M, M))
filter3(cons2(X, Y), s1(N), M) -> cons2(X, filter3(Y, N, M))
sieve1(cons2(0, Y)) -> cons2(0, sieve1(Y))
sieve1(cons2(s1(N), Y)) -> cons2(s1(N), sieve1(filter3(Y, N, N)))
nats1(N) -> cons2(N, nats1(s1(N)))
zprimes -> sieve1(nats1(s1(s1(0))))
The set Q consists of the following terms:
filter3(cons2(x0, x1), 0, x2)
filter3(cons2(x0, x1), s1(x2), x3)
sieve1(cons2(0, x0))
sieve1(cons2(s1(x0), x1))
nats1(x0)
zprimes
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
FILTER3(cons2(X, Y), 0, M) -> FILTER3(Y, M, M)
FILTER3(cons2(X, Y), s1(N), M) -> FILTER3(Y, N, M)
The TRS R consists of the following rules:
filter3(cons2(X, Y), 0, M) -> cons2(0, filter3(Y, M, M))
filter3(cons2(X, Y), s1(N), M) -> cons2(X, filter3(Y, N, M))
sieve1(cons2(0, Y)) -> cons2(0, sieve1(Y))
sieve1(cons2(s1(N), Y)) -> cons2(s1(N), sieve1(filter3(Y, N, N)))
nats1(N) -> cons2(N, nats1(s1(N)))
zprimes -> sieve1(nats1(s1(s1(0))))
The set Q consists of the following terms:
filter3(cons2(x0, x1), 0, x2)
filter3(cons2(x0, x1), s1(x2), x3)
sieve1(cons2(0, x0))
sieve1(cons2(s1(x0), x1))
nats1(x0)
zprimes
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
FILTER3(cons2(X, Y), 0, M) -> FILTER3(Y, M, M)
FILTER3(cons2(X, Y), s1(N), M) -> FILTER3(Y, N, M)
Used argument filtering: FILTER3(x1, x2, x3) = x1
cons2(x1, x2) = cons1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
filter3(cons2(X, Y), 0, M) -> cons2(0, filter3(Y, M, M))
filter3(cons2(X, Y), s1(N), M) -> cons2(X, filter3(Y, N, M))
sieve1(cons2(0, Y)) -> cons2(0, sieve1(Y))
sieve1(cons2(s1(N), Y)) -> cons2(s1(N), sieve1(filter3(Y, N, N)))
nats1(N) -> cons2(N, nats1(s1(N)))
zprimes -> sieve1(nats1(s1(s1(0))))
The set Q consists of the following terms:
filter3(cons2(x0, x1), 0, x2)
filter3(cons2(x0, x1), s1(x2), x3)
sieve1(cons2(0, x0))
sieve1(cons2(s1(x0), x1))
nats1(x0)
zprimes
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
SIEVE1(cons2(s1(N), Y)) -> SIEVE1(filter3(Y, N, N))
SIEVE1(cons2(0, Y)) -> SIEVE1(Y)
The TRS R consists of the following rules:
filter3(cons2(X, Y), 0, M) -> cons2(0, filter3(Y, M, M))
filter3(cons2(X, Y), s1(N), M) -> cons2(X, filter3(Y, N, M))
sieve1(cons2(0, Y)) -> cons2(0, sieve1(Y))
sieve1(cons2(s1(N), Y)) -> cons2(s1(N), sieve1(filter3(Y, N, N)))
nats1(N) -> cons2(N, nats1(s1(N)))
zprimes -> sieve1(nats1(s1(s1(0))))
The set Q consists of the following terms:
filter3(cons2(x0, x1), 0, x2)
filter3(cons2(x0, x1), s1(x2), x3)
sieve1(cons2(0, x0))
sieve1(cons2(s1(x0), x1))
nats1(x0)
zprimes
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
SIEVE1(cons2(s1(N), Y)) -> SIEVE1(filter3(Y, N, N))
SIEVE1(cons2(0, Y)) -> SIEVE1(Y)
Used argument filtering: SIEVE1(x1) = x1
cons2(x1, x2) = cons1(x2)
filter3(x1, x2, x3) = x1
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
filter3(cons2(X, Y), 0, M) -> cons2(0, filter3(Y, M, M))
filter3(cons2(X, Y), s1(N), M) -> cons2(X, filter3(Y, N, M))
sieve1(cons2(0, Y)) -> cons2(0, sieve1(Y))
sieve1(cons2(s1(N), Y)) -> cons2(s1(N), sieve1(filter3(Y, N, N)))
nats1(N) -> cons2(N, nats1(s1(N)))
zprimes -> sieve1(nats1(s1(s1(0))))
The set Q consists of the following terms:
filter3(cons2(x0, x1), 0, x2)
filter3(cons2(x0, x1), s1(x2), x3)
sieve1(cons2(0, x0))
sieve1(cons2(s1(x0), x1))
nats1(x0)
zprimes
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.